
Public

SMART CONTRACT AUDIT REPORT

for

Lode

Prepared By: Xiaomi Huang

PeckShield
December 21, 2024

1/17 PeckShield Audit Report #: 2024-239

contact@peckshield.com

Public

Document Properties

Client Lode
Title Smart Contract Audit Report
Target Lode
Version 1.0
Author Xuxian Jiang
Auditors Daisy Cao, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 December 21, 2024 Xuxian Jiang Final Release
1.0-rc September 22, 2024 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2024-239

Public

Contents

1 Introduction 4
1.1 About Lode . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Validation of Function Arguments in closeSymmioPosition() 11
3.2 Strengthened State Transition Condition in withdrawFromSubAccount() 12
3.3 Trust Issue of Admin Keys . 13

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2024-239

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Lode protocol, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Lode

The Lode Funding Rate Farming protocol is an automated platform designed for users to farm positive
funding rates on tradable assets while maintaining a delta-neutral position. By utilizing spot longs
and leveraged shorts, the system allows users to profit from funding rate arbitrage without exposure
to market direction. Key features include automated position management, real-time monitoring
of funding rates and collateral, and rebalancing to mitigate liquidation risk. The protocol provides
tools for users to deposit stablecoins, open positions, adjust short positions, and execute trades with
built-in protections like stop losses and principal preservation. The basic information of Lode is as
follows:

Table 1.1: Basic Information of Lode

Item Description
Target Lode
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report December 21, 2024

In the following, we show the Git repository of reviewed files and the commit hash values used in
this audit. Note the given repo has a number of contracts and this audit only covers the following

4/17 PeckShield Audit Report #: 2024-239

Public

contracts1: Account.sol, AccountsCenter.sol, and BaseAccount.sol.

• https://github.com/Intent-X/sf-core-contracts.git (6ecfebc)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

1With that, this audit is considered as partial audit and does not cover the integration of external protocols.

5/17 PeckShield Audit Report #: 2024-239

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2024-239

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2024-239

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2024-239

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Lode implementation. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 2

Informational 0

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/17 PeckShield Audit Report #: 2024-239

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability and 2 low-severity vulnerabilities.

Table 2.1: Key Lode Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Validation of Function Ar-

guments in closeSymmioPosition()
Coding Practices Resolved

PVE-002 Low Strengthened State Transition Condi-
tion in withdrawFromSubAccount()

Business Logic Resolved

PVE-003 Medium Trust Issue Of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/17 PeckShield Audit Report #: 2024-239

Public

3 | Detailed Results

3.1 Improved Validation of Function Arguments in
closeSymmioPosition()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Account

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

The Lode protocol has a core Account contract that serves as the base for account management. It is
also used to centrally manage various sub-accounts and their positions. In the process of examining
the position-closing logic, we notice the given input arguments can be better validated.

In the following, we show the implementation of the related closeSymmioPosition() routine. As
the name indicates, this routine is used to close a position within the Symmio system for a spe-
cific sub-account. With that, there is a need to validate the given quoteId is indeed associated
with the given sub-account. To remedy, we can enforce the following requirement, i.e., require(

currentSubAccountPositionId[subAccount_] == closeRequestParams_.quoteId).

705 f unc t i on c l o s eSymmioPos i t i on (
706 bool shouldRefund_ ,
707 address subAccount_ ,
708 C lo s eReque s tPos i t i onPa rams c a l l d a t a c loseRequestParams_
709) ex te rna l gasRefund (shouldRefund_) onlyOwnerOrKeeper {
710 _mult iAccount () . _ca l l (
711 subAccount_ ,
712 _toArrayWithOneElement (
713 ab i . encodeWi thSe l e c t o r (
714 ISymmio . r e q u e s tToC l o s ePo s i t i o n . s e l e c t o r ,
715 c loseRequestParams_ . quote Id ,
716 c loseRequestParams_ . c l o s eP r i c e ,
717 c loseRequestParams_ . quant i t yToC lo se ,

11/17 PeckShield Audit Report #: 2024-239

Public

718 c loseRequestParams_ . orderType ,
719 c loseRequestParams_ . d e a d l i n e
720)
721)
722) ;
723 }

Listing 3.1: Account::closeSymmioPosition()

Recommendation Improve the above routine by validating the given quoteId is indeed associ-
ated with the given sub-account. Note another routine forceCloseSymmioPosition() can be similarly
improved.

Status The issue has been resolved. The team confirms that there is no such need as Symmio

has its own checks to validate that the specified quoteId belongs to the specified subAccount, and it
will not allow unauthorized or invalid calls.

3.2 Strengthened State Transition Condition in
withdrawFromSubAccount()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Account

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

As mentioned in Section subsec:pve001, the Account contract keeps track of various sub-accounts
and their positions. For each sub-account, it maintains a state-transition machine to guard the sub-
account operation. While examining the state-transition from POSITION_WAITING_WITHDRAW to CLOSED,
we notice the need of enforcing the _WITHDRAW_DELAY parameter. And current implementation can be
improved by restricting the _WITHDRAW_DELAY enforcement only during the specific state transition.

To elaborate, we show below the implementation of the related withdrawFromSubAccount() rou-
tine. As the name indicates, this routine is designed to withdraw funds from a sub-account for
a specific position. And the withdrawal delay enforcement only occurs when the position state is
POSITION_WAITING_WITHDRAW, not QUOTE_WAITING_WITHDRAW.

442 function withdrawFromSubAccount(
443 bool shouldRefund_ ,
444 uint256 id_ ,
445 FeeDiscountSignature memory signature_

12/17 PeckShield Audit Report #: 2024-239

Public

446) external gasRefund(shouldRefund_) onlyOwnerOrKeeper {
447 DeltaNeutralPosition memory position = positionsInfo[id_];
448 if (
449 position.status !=
450 DeltaNeutralPositionStatus.POSITION_WAITING_WITHDRAW &&
451 position.status != DeltaNeutralPositionStatus.QUOTE_WAITING_WITHDRAW
452) {
453 revert InvalidDeltaNeutralPositionStatus ();
454 }
455 if (
456 position.startWithdrawTimestamp + _WITHDRAW_DELAY > block.timestamp
457) {
458 revert WithdrawDelayWindow ();
459 }
460 ...
461 }

Listing 3.2: Account::withdrawFromSubAccount()

Recommendation Revise the above logic to enforce _WITHDRAW_DELAY only when current position
status is POSITION_WAITING_WITHDRAW.

Status The issue has been resolved. The team clarifies that _WITHDRAW_DELAY is a dupli-
cate Symmio of the deallocate delay, which is applied to all allocated symmio balances, so both
POSITION_WAITING_WITHDRAW and QUOTE_WAITING_WITHDRAW will have a 12 hour delay for withdraw There-
fore, there is no point in applying it for one state out of 2, since it will be applied in any case, and
in case of a change in the case, this duplicate delay will most likely be removed in the future.

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

The Lode protocol has a privileged account (with the DEFAULT_ADMIN_ROLE privilege) that plays a
critical role in governing and regulating the protocol-wide operations (e.g., assign roles, configure
parameters, pause/unpause the protocol, and upgrade proxies). It also has the privilege to control
or govern the flow of assets among various protocol components. In the following, we examine the
privileged account and related privileged accesses in current contracts.

13/17 PeckShield Audit Report #: 2024-239

Public

151 function setCollateral(
152 address collateral_
153)
154 external
155 virtual
156 override
157 onlyRole(DEFAULT_ADMIN_ROLE)
158 notZeroAddress(collateral_)
159 {
160 collateral = collateral_;
161 emit SetCollateral(collateral_);
162 }
163 ...
164 function setSymmioAddress(
165 address symmioAddress_
166)
167 external
168 virtual
169 override
170 onlyRole(DEFAULT_ADMIN_ROLE)
171 notZeroAddress(symmioAddress_)
172 {
173 symmioAddress = symmioAddress_;
174 emit SetSymmioAddress(symmioAddress_);
175 }
176 ...
177 function setMultiAccount(
178 address multiAccount_
179)
180 external
181 virtual
182 override
183 onlyRole(DEFAULT_ADMIN_ROLE)
184 notZeroAddress(multiAccount_)
185 {
186 multiAccount = multiAccount_;
187 emit SetMultiAccount(multiAccount_);
188 }
189 ...
190 function setSwapRouterV3(
191 address swapRouterV3_
192)
193 external
194 virtual
195 override
196 onlyRole(DEFAULT_ADMIN_ROLE)
197 notZeroAddress(swapRouterV3_)
198 {
199 swapRouterV3 = swapRouterV3_;
200 emit SetSwapRouterV3(swapRouterV3_);
201 }
202 ...

14/17 PeckShield Audit Report #: 2024-239

Public

203 function setTresuary(
204 address tresuary_
205)
206 external
207 virtual
208 override
209 onlyRole(DEFAULT_ADMIN_ROLE)
210 notZeroAddress(tresuary_)
211 {
212 tresuary = tresuary_;
213 emit SetTresuary(tresuary_);
214 }
215 ...
216 function upgradeTo(
217 address implementation_
218)
219 external
220 virtual
221 override
222 onlyRole(DEFAULT_ADMIN_ROLE)
223 notZeroAddress(implementation_)
224 {
225 implementation = implementation_;
226 emit Upgraded(implementation_);
227 }
228 ...
229 function pause() external virtual override onlyRole(DEFAULT_ADMIN_ROLE) {
230 _pause ();
231 }
232 ...
233 function unpause () external virtual override onlyRole(DEFAULT_ADMIN_ROLE) {
234 _unpause ();
235 }

Listing 3.3: Example Privileged Operations in AccountsCenter

We understand the need of the privileged functions for proper contract operations, but at the
same time the extra power to these privileged accounts may also be a counter-party risk to the
contract users. Therefore, we list this concern as an issue here from the audit perspective and highly
recommend making these privileges explicit or raising necessary awareness among protocol users.

Moreover, it should be noted that current contracts have the support of being deployed behind
a proxy. And there is a need to properly manage the proxy-admin privileges as they fall in this trust
issue as well.

Recommendation Promptly transfer the owner privilege to the intended DAO-like governance
contract. And activate the normal on-chain community-based governance life-cycle and ensure the
intended trustless nature and high-quality distributed governance.

Status This issue has been mitigated with the use of a multisig as the admin.

15/17 PeckShield Audit Report #: 2024-239

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of Lode protocol, which is an auto-
mated platform designed for users to farm positive funding rates on tradable assets while maintaining
a delta-neutral position. By utilizing spot longs and leveraged shorts, the system allows users to
profit from funding rate arbitrage without exposure to market direction. Key features include auto-
mated position management, real-time monitoring of funding rates and collateral, and rebalancing
to mitigate liquidation risk. The protocol provides tools for users to deposit stablecoins, open posi-
tions, adjust short positions, and execute trades with built-in protections like stop losses and principal
preservation. The current code base is well structured and neatly organized. Those identified issues
are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

16/17 PeckShield Audit Report #: 2024-239

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2024-239

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Lode
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Validation of Function Arguments in closeSymmioPosition()
	Strengthened State Transition Condition in withdrawFromSubAccount()
	Trust Issue of Admin Keys

	Conclusion
	References

