
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Lode

Collaborative Audit Prepared For: Lode
Lead Security Expert(s): eeyore

xiaoming90
Date Audited: February 3 - February 9, 2025
Final Commit: 8af694b

1

https://github.com/0xklapouchy
https://github.com/xiaoming9090
https://github.com/Intent-X/sf-core-contracts/tree/8af694bfbd4857b76b60352ae6e8213de399cfe3

Introduction
LODE is an intents-based derivatives exchange deploying on Berachain. This audit will
focus on their first structured yield farming funding rate product.

Scope
Repository: Intent-X/sf-core-contracts

Audited Commit: 9b8e7574f42db41d5c759ca119f1d49ec18c0e0c

Final Commit: 8af694bfbd4857b76b60352ae6e8213de399cfe3

Files:

• contracts/funding/Account.sol

• contracts/funding/AccountsCenter.sol

• contracts/funding/BaseAccount.sol

• contracts/funding/interfaces/IAccount.sol

• contracts/funding/interfaces/IAccountsCenter.sol

• contracts/funding/interfaces/IBaseAccount.sol

Final Commit Hash
8af694bfbd4857b76b60352ae6e8213de399cfe3

Findings
Each issue has an assigned severity:

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• High issues are directly exploitable security vulnerabilities that need to be fixed.

• Low/Info issues are non-exploitable, informational findings that do not pose a
security risk or impact the system’s integrity. These issues are typically cosmetic or
related to compliance requirements, and are not considered a priority for
remediation.

2

https://github.com/Intent-X/sf-core-contracts/tree/8af694bfbd4857b76b60352ae6e8213de399cfe3

Issues Found

High Medium Low/Info

5 4 7

Issues Not Fixed and Not Acknowledged

High Medium Low/Info

0 0 0

3

Issue H-1: Undervalued fee accounting
Source: https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/7

Summary
The fee is not scaled to the appropriate SYMMIO's precision before performing an
internal transfer, leading to the protocol receiving fewer fees than expected.

Vulnerability Detail
When calling the Symmio.internalTransfer() function, the amount must be in the original
SYMMIO's 18 decimals precision.

However, the fee variable in Line 783 below is in the collateral token's native precision
(e.g., USDC = 6 decimals). Thus, the fee received by the protocol's treasury will be much
fewer than expected.

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L775

File: Account.sol
775: if (fee > 0) {
776: finalBalance -= fee;
777: positionsInfo[id_].fee += fee;
778: _simpleMultiAccountCall(
779: position.subAccount,
780: abi.encodeWithSelector(
781: ISymmio.internalTransfer.selector,
782: IAccountsCenter(center).tresuary(),
783: fee
784:)
785:);
786: emit Fee(id_, fee);
787: }

Impact
Fees received by the protocol's treasury will be much fewer than expected.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol

4

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/7
https://github.com/SYMM-IO/protocol-core/blob/fdd258de01906c5350a12e70073b929cc28eceb5/contracts/facets/Account/AccountFacet.sol#L75
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L775
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L775
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L775
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L775
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L775
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L775

#L775

Tool Used
Manual Review

Recommendation
Scale the fee to SYMMIO's 18 decimals precision before calling the
Symmio.internalTransfer function.

Discussion
aegas-io

Will fix

xiaoming9090

Fix Confirmed. Fixed here as per recommendation.

5

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L775
https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L787

Issue H-2: totalSpotLongAssetInvolved will be
inflatedwhenposition is closed if it is partiallyfilled
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/9

Summary
totalSpotLongAssetInvolved will be inflated as all reserved LONG assets cannot be sold
off during a partial fill.

Vulnerability Detail
Assume that Alice opens a new position via the _tryOpenPosition function and sets the
nativeSpotLongAssetInvolved_ to 100 WETH. In this case, the
totalSpotLongAssetInvolved[WETH] will be set to 100 WETH in Line 1436 below. 100 WETH
is reserved.

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1436

File: Account.sol
1273: function _tryOpenPosition(
..SNIP..
1433: if (nativeSpotLongAssetInvolved_ > 0) {
1434: totalSpotLongAssetInvolved[
1435: spotLongAsset_
1436:] += nativeSpotLongAssetInvolved_;
..SNIP..
1442: } else {
1443: totalSpotLongAssetCollateralReserv += toLongSpotPosition;
1444: }

However, only 50% of the short positions end up being filled. It might not always be
possible to fill the entire amount due to the following reasons:

• Order size is too big, and there are insufficient interested PartyB/Hedger to fulfill
the orders; OR

• After the first SYMMIO's position (e.g., a position size of 50 WETH) is created, the
position incurs a loss due to a sudden change in price. The account goes
underwater and is subjected to liquidation. No new position can be created from
this point.

Thus, when the confirmOpenPosition function is executed, the
positionsInfo[id_].longAssetBalance will be set to 50 WETH.

6

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/9
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1436
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1436
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1436

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L992

File: Account.sol
917: function confirmOpenPosition(
..SNIP..
985: } else { // @audit-info if position.nativeSpotLongAssetInvolved > 0
986: spotLongOutAmount =
987: (spotLongOutAmount * filledPercentage) /
988: _PERCENTAGE_PRECISION;
989: }
990: positionsInfo[id_]
991: .filledShortPositionAmount += filledShortPositionAmount_;
992: positionsInfo[id_].longAssetBalance += spotLongOutAmount;

Scenario 1 - Position remains healthy

After some time, Alice decided to close the position. Thus, she calls sellSpotLongAsset
function to swap all the existing LONG assets to the collateral. The
positionsInfo[id_].longAssetBalance will reduce from 50WETH to 0 AND the
totalSpotLongAssetInvolved[WETH] will reduce from 100 WETH to 50 WETH.

Note that the sellSpotLongAsset function cannot be executed again to sell off the
remaining totalSpotLongAssetInvolved[WETH] = 50 WETH because the
positionsInfo[id_].longAssetBalance is already zero at this point and will revert due to
underflow.

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1067

File: Account.sol
1020: function sellSpotLongAsset(
..SNIP..
1066: positionsInfo[id_].exitLongAssetAmount += collateralOutAmount;
1067: positionsInfo[id_].longAssetBalance -= longAssetToSell_;
1068: totalSpotLongAssetInvolved[position.spotLongAsset] -=

longAssetToSell_;↪→

Since the positionsInfo[id_].longAssetBalance is now equal to zero, Alice can close the
position and wind up the current subaccount (deallocate & withdraw)

However, the issue is that after winding up the subaccount, the
totalSpotLongAssetInvolved[WETH] will still remain at 50 WETH.

The current design assumes that all the 100 WETH will be entirely filled before the
position is closed. However, the position may be closed before all the 100 WETH is filled,
leading to the above issue. As a result, the totalSpotLongAssetInvolved[WETH] will be
inflated, leading to the LONG asset (e.g., WETH here) being stuck and cannot be utilized.

7

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L992
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L992
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L992
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1067
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1067
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1067

Scenario 2 - Position becomes unhealthy and account is subjected to liquidation

Assume that the account is being liquidated. The position will be closed. Similarly, users
will call the sellSpotLongAsset function, but only up to 50 WETH can be sold off. The
totalSpotLongAssetInvolved[WETH] remains at 50 WETH, similar to the problem in the
first scenario.

Impact
totalSpotLongAssetInvolved will be inflated, leading to LONG assets being stuck.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1436

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L992

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1067

Tool Used
Manual Review

Recommendation
The sellSpotLongAsset function should be redesigned to handle the edge case when
there is a partial fill. In the above scenario, the sellSpotLongAsset function should allow
all the reserved 100 WETH (LONG asset) to be sold off.

Discussion
aegas-io

Will fix

xiaoming9090

Fix Confirmed.

The updated implementation will track the actual amount of
nativeSpotLongAssetInvolved utilised via the nativeSpotLongAssetUsed variable in here.

8

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1436
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1436
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1436
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L992
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L992
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L992
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1067
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1067
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1067
https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L993

Using the same scenario one from the report, when the position is closed via the
confirmClosePosition function, the _tryUnreserveRest function will be executed, and the
unused long assets of 50 WETH will be ”unreserved”/released in Line 1581 of the
_tryUnreserveRest function. Users can then withdraw the unused long assets from their
accounts.

9

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1212
https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1573
https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1581

IssueH-3: totalSpotLongAssetCollateralReservwill
be inflated when position is closed if it is partially
filled
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/10

Summary
totalSpotLongAssetCollateralReserv will be inflated as unused reserved collateral in
totalSpotLongAssetCollateralReserv were not released.

Vulnerability Detail
Note

Note: This issue is quite similar to ”totalSpotLongAssetInvolved will be inflated when
position is closed if it is partially filled” issue

This issue happens when nativeSpotLongAssetInvolved_ == 0, while the latter occurs
when nativeSpotLongAssetInvolved_ > 0. However, since different state variables are
affected, it is easier to keep track of the problems with two separate issues.

Assume that Alice opens a new position via the _tryOpenPosition function. She sets the
amount_ to 400 USDC and nativeSpotLongAssetInvolved_ to zero.

In this case, toLongSpotPosition will be 300 USDC while toShortSymmioPosition will be
100 USDC.

The current state at this point is as follows:

• totalSpotLongAssetInvolved[ETH] = 0 ETH

• positionsInfo[id_].longAssetBalance = 0 ETH

• totalSpotLongAssetCollateralReserv = 300 USDC

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1443

File: Account.sol
1273: function _tryOpenPosition(
..SNIP..
1433: if (nativeSpotLongAssetInvolved_ > 0) {
..SNIP..
1442: } else { // @audit-info nativeSpotLongAssetInvolved_ == 0 => True

10

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/10
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1443
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1443
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1443

1443: totalSpotLongAssetCollateralReserv += toLongSpotPosition;
1444: }

After the _tryOpenPosition function is executed, the
totalSpotLongAssetCollateralReserv will be 300 USDC.

Someone perform a 50% partial fill of the SYMM's short position. Thus,
totalSpotLongAssetCollateralReserv will be reduced by 150 USDC (300 USDC * 50%)
from 300 USDC to 150 USDC. Assume the price of USDC and ETH is 1:1 for simplicity's sake.
In this case, 150 USDC will be swapped for 150 ETH.

The current state at this point is as follows:

• totalSpotLongAssetInvolved[ETH] = 150 ETH

• positionsInfo[id_].longAssetBalance = 150 ETH

• totalSpotLongAssetCollateralReserv = 150 USDC

Scenario 1 - Position remains healthy

Alice decided to close her position. Thus, she must sell off all her LONG asset (ETH). After
selling off all her ETH, she will receive 150 USDC in return. The state will be as follows:

• positionsInfo[id_].longAssetBalance = 150 ETH - 150 ETH = 0

• totalSpotLongAssetInvolved[ETH] = 150 ETH - 150 ETH = 0

• totalSpotLongAssetCollateralReserv = 150 USDC

She then proceeds to call confirmClosePosition() => deallocateFromSubAccount() =>
withdrawFromSubAccount() to close the existing position completely.

At the end, after the subaccount and its position are closed and cleared completely, we
can still see that the totalSpotLongAssetCollateralReserv remains at 150 USDC.

As a result, totalSpotLongAssetCollateralReserv will always be inflated, resulting in
collateral tokens (USDC) in the contract being underrepresented or stuck when
getAvailableCollateralBalance() is called.

Scenario 2 - Position becomes unhealthy and account is subjected to liquidation

Assume that the account is being liquidated. The position will be closed. Similarly, users
will call the sellSpotLongAsset function to sell off all existing LONG assets (ETH). The
same issue described in the first scenario also occurs here.

Impact
totalSpotLongAssetCollateralReserv will be inflated, leading to collateral assets being
stuck.

11

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1443

Tool Used
Manual Review

Recommendation
Any unused reserved collateral in totalSpotLongAssetCollateralReserv should be
released when the position is closed.

Discussion
aegas-io

Will fix

xiaoming9090

Observed that the solution to address the scenarios highlighted in the report is to
execute the _tryUnreserveRest() function when closing the position to release the
unused reserved collateral in totalSpotLongAssetCollateralReserv. Using back the same
example in the report, when the _tryUnreserveRest, the unused long reserved assets of
150 USDC will be released from totalSpotLongAssetCollateralReserv at Line 1593 below.

File: Account.sol
1573: function _tryUnreserveRest(uint256 id_) internal {
1574: DeltaNeutralPosition memory position = positionsInfo[id_];
1575: if (!position.alreadyUnreserved) {
1576: if (
1577: _symmio().getPartyAPendingQuotes(position.subAccount).length

==↪→

1578: 0
1579:) {
1580: if (position.nativeSpotLongAssetInvolved > 0) {
1581: totalSpotLongAssetInvolved[position.spotLongAsset] -=
1582: position.nativeSpotLongAssetInvolved -
1583: position.nativeSpotLongAssetUsed;
1584: } else {
1585: uint256 filledPercentage = (position
1586: .filledShortPositionAmount * _PERCENTAGE_PRECISION) /
1587: position.initToShortAssetAmount;
1588:

12

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1443
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1443
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1443

1589: uint256 unusedSpotLongAssetCollateralReserv =
(filledPercentage *↪→

1590: position.initToLongAssetAmount) /
1591: _PERCENTAGE_PRECISION;
1592:
1593: totalSpotLongAssetCollateralReserv -=
1594: position.initToLongAssetAmount -
1595: unusedSpotLongAssetCollateralReserv;
1596: }
1597:
1598: positionsInfo[position.id].alreadyUnreserved = true;
1599: }
1600: }
1601: }

However, it was observed that there are two math division operations in Lines 1585 and
1589 above, which might result in rounding error. The outcome is that the
unusedSpotLongAssetCollateralReserv might be lower than expected (e.g., 1 wei or few
wei).

Assume that unusedSpotLongAssetCollateralReserv is lower than expected, then
(position.initToLongAssetAmount - unusedSpotLongAssetCollateralReserv) will end up
larger than expected.

Assume that there is only one position left in the system. If
(position.initToLongAssetAmount - unusedSpotLongAssetCollateralReserv) is larger
than expected, in a rare edge case, it might underflow when attempting to subtract the
value from totalSpotLongAssetCollateralReserv in Line 1593, likely due to 1 or few wei
difference.

To eliminate any potential rounding error, it is recommended to use a state variable to
keep track of the reserved long collateral used instead of computing it on the fly with
multiple division operations that might be susceptible to rounding errors.

function _tryUnreserveRest(uint256 id_) internal {
..SNIP..

} else {
- uint256 filledPercentage = (position
- .filledShortPositionAmount * _PERCENTAGE_PRECISION) /
- position.initToShortAssetAmount;
-
- uint256 unusedSpotLongAssetCollateralReserv = (filledPercentage *
- position.initToLongAssetAmount) /
- _PERCENTAGE_PRECISION;

totalSpotLongAssetCollateralReserv -=
position.initToLongAssetAmount -

- unusedSpotLongAssetCollateralReserv;
+ position.spotLongAssetCollateralReservUsed

}

13

positionsInfo[position.id].alreadyUnreserved = true;
}

}
}

function confirmOpenPosition(
..SNIP..

spotLongOutAmount =
IERC20Upgradeable(position.spotLongAsset).balanceOf(

address(this)
) -
balanceBefore;

if (spotLongOutAmount < swapRouterLongAssetMinAmountOut_) {
revert InsufficientAmountOut();

}
totalSpotLongAssetCollateralReserv -= collateralToSwap;

+ positionsInfo[id_].spotLongAssetCollateralReservUsed += collateralToSwap;

xiaoming9090

On a side note, if the above recommendation is adopted, the following refactor can be
made to simplify the code:

function deallocateFromSubAccount(
..SNIP..
- uint256 filledPercentage = (position.filledShortPositionAmount *
- _PERCENTAGE_PRECISION) / position.initToShortAssetAmount;
-
- uint256 usedSpotLongAssetCollateralReserv = (filledPercentage *
- position.initToLongAssetAmount) / _PERCENTAGE_PRECISION;
-

uint256 usedCollateralBalance = position
.additionalShortPositionBalance +
position.initToShortAssetAmount +

- usedSpotLongAssetCollateralReserv;
+ positionsInfo[id_].spotLongAssetCollateralReservUsed

xiaoming9090

Fixed Confirmed. Change made in https://github.com/Intent-X/sf-core-contracts/com
mit/76a757daaf0f433835850ef924f0364c446a7575

14

https://github.com/Intent-X/sf-core-contracts/commit/76a757daaf0f433835850ef924f0364c446a7575
https://github.com/Intent-X/sf-core-contracts/commit/76a757daaf0f433835850ef924f0364c446a7575

Issue H-4: The confirmOpenPosition() function
should support the QUOTE_CANCEL_PENDING position
status
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/14

Summary
In certain situations, SYMMIO can ignore a user's request to cancel their quote, leading
to the quote being filled and the user's funds becoming locked in the Account contract.

Vulnerability Detail
This issue arises when a user calls the requestToCancelQuote() function on a quote that is
already LOCKED for filling. In such cases, the quote is assigned a CANCELED_PENDING status
within the SYMMIO system.

The possible next quoteStatus values after it being set to CANCELED_PENDING are:

• CANCELLED

• OPENED

• LIQUIDATED_PENDING

• EXPIRED

Unfortunately, within the Account contract, when a quote receives the CANCELED_PENDING
status, the internal position status is updated to QUOTE_CANCEL_PENDING. When this
position status is set, the only accepted next quote status is CANCELLED.

File: Account.sol
674: function forceCancelQuote(
675: bool shouldRefund_,
676: uint256 id_
677:) external gasRefund(shouldRefund_) onlyOwnerOrKeeper {
678: DeltaNeutralPosition memory position = positionsInfo[id_];
679: _checkStatus(
680: position.status,
681: DeltaNeutralPositionStatus.QUOTE_CANCEL_PENDING
682:);
..SNIP..
692:
693: _checkQuoteStatus(quoteStatus, QuoteStatus.CANCELED);

15

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/14

However, within SYMMIO, a CANCELED_PENDING quote can still be filled by PartyB and
receive an OPENED status. In such a situation, user funds become locked, and the position
may be liquidated due to market conditions or accrue funding fees.

Even if closed with the closeSymmioPosition function, the position cannot be finalized
internally.

Impact
User funds may become locked in the subAccount.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L654-L657

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L693

Tool Used
Manual Review

Recommendation
Keepers should support this scenario and correctly report an opened position in the
confirmOpenPosition() function:

function confirmOpenPosition(
..SNIP..

if (
position.status !=
DeltaNeutralPositionStatus.WAITING_CONFIRMATION &&

+ position.status != DeltaNeutralPositionStatus.QUOTE_CANCEL_PENDING &&
position.status != DeltaNeutralPositionStatus.POSITION_OPENED

) {
revert InvalidDeltaNeutralPositionStatus();

}

Discussion
aegas-io

16

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L654-L657
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L654-L657
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L654-L657
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L693
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L693
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L693

Will fix

0xklapouchy

Fix Confirmed. Fixed here as per recommendation.

17

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L934

Issue H-5: Incorrect PnL calculation during partial
fill
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/18

Summary
When closing a LODE's position, the system only checks the first opened position's status
but does not verify that the rest of the open positions and pending quotes are closed. As
a result, the subaccount's allocated balance might not reflect the entire sum of
profit/loss, as some positions/quotes remain open, leading to incorrect calculation.

Vulnerability Detail
The PartyB/Hedger at SYMMIO can perform a partial fill (Reference). Assume that during
the Account.tryOpenPosition() transaction, a 100 ETH short quote is created at SYMMIO.

It is possible that:

• PartyB_1 fills the first 50 ETH of the short quote (quoteID = 900). Created short
position (PosID=1234) and spawned a new short quote (quoteID = 901) with the
remaining size of 50 ETH.

• PartyB_2 fills the 30 ETH of the short quote (quoteID = 901). Created short position
(PosID=1235) and spawned a new short quote (quoteID=902) with the remaining size
of 20 ETH.

• Pending short quote (quoteID=902) of 20 ETH remains unfilled

In this case, two (2) short positions with different position IDs or quote IDs will be opened
for a single LODE's position.

Note

One crucial point is that when the original quote is partially filled, a new quote with a
different quote ID will be created/”spawned” (Reference).

Within the confirmClosePosition() function, it only checks whether the first short
position (Position ID = 1234) is closed. If it's closed, the LODE's position will be considered
closed (aka status = POSITION_WAITING_DEALLOCATE).

However, for a LODE's position to be considered as fully closed, all short positions and
pending quotes of the subaccount must be closed.

In this case, we can see a scenario where the first short position is closed, but the second
position (PosID=1235) and a pending quote (quoteID=902) remain open. As a result, a 30
ETH short position + 20 ETH pending short quote will remain open at SYMMIO's end after
the LODE's position is closed.

18

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/18
https://github.com/SYMM-IO/protocol-core/blob/dedde07a7f3018cb2d2563ec6386f71e89f2c0dd/contracts/libraries/LibPartyB.sol#L122
https://github.com/SYMM-IO/protocol-core/blob/dedde07a7f3018cb2d2563ec6386f71e89f2c0dd/contracts/libraries/LibPartyB.sol#L124C4-L124C13

Impact
The profit & loss (PnL) calculation of the LODE's position will be incorrect. In this scenario,
the system will assume that the current LODE's position to be closed to incur a huge loss
because the assets in the second short position and pending quote are ignored. On the
other hand, the subsequent LODE's position opens with this specific subaccount will
have its profit inflated.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1173

Tool Used
Manual Review

Recommendation
Consider only closing a LODE position if all the following requirements are met:

• All open positions of the subaccount are closed

• All pending quotes of the subaccount are closed

• Subaccount is not in liquidation status (liquidationStatus == false). Refer to
”Position is closed even if liquidation is still on-going” issue for more details

Discussion
aegas-io

Will fix

The idea was to optimize the process, gas consumption and put the need to process
extreme cases on Keeper (partialy filled), which has this capability, but since there are
simple ways to check for exist open/pending positions, this will be improved and a strong
check will be added.

This is the reason why there are no hard validations of quoteId in a certain set of methods

xiaoming9090

Fix Confirmed. Fixed as per recommendation. Position can only be closed if:

• The subaccount is not under liquidation (Reference) or when the liquidation is
completed.

19

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1173
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1173
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1173
https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1230

• All opened positions and pending quotes of the subaccount are closed (Reference)

20

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1226

Issue M-1: The forceCancelQuote() function should
support the EXPIRED quote status
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/15

Summary
If the quote status is set to CANCEL_PENDING after calling the requestToCancelQuote()
function, the quote can be updated not only by PartyB (to CANCELLED or OPENED) but also
by anyone using the expireQuote() function in PartyA (to EXPIRED).

Vulnerability Detail
When the requestToCancelQuote() function is called while the quote is LOCKED for filling
but has not yet expired, its status is updated to CANCEL_PENDING.

There is a potential edge case where a position in the CANCEL_PENDING state can expire
before the required wait time for it to be available for force-closure.

In such a situation, anyone can grief another user by calling the expireQuote() function
(Reference) in PartyA, locking the user out of their position and funds.

Impact
User funds may become locked in the subAccount.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L693

Tool Used
Manual Review

Recommendation
The forceCancelQuote() function should support this scenario and correctly handle
expired quotes:

21

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/15
https://github.com/SYMM-IO/protocol-core/blob/main/contracts/facets/PartyA/PartyAFacet.sol#L159
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L693
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L693
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L693

function forceCancelQuote(
bool shouldRefund_,
uint256 id_

) external gasRefund(shouldRefund_) onlyOwnerOrKeeper {
..SNIP..
- _checkQuoteStatus(quoteStatus, QuoteStatus.CANCELED);
+ if (
+ quoteStatus != QuoteStatus.EXPIRED &&
+ quoteStatus != QuoteStatus.CANCELED
+) {
+ revert InvalidQuoteStatus();
+ }

Discussion
aegas-io

Will fix

0xklapouchy

Fix Confirmed.

The _checkQuoteStatus() check was removed from the forceCancelQuote() function, and
the function was updated to support positions with multiple quote IDs.

The EXPIRED quote status is now correctly supported within the forceCancelQuote()
function for positions with QUOTE_CANCEL_PENDING and POSITION_OPENED statuses.

22

Issue M-2: User premature calling of closeSymmio
Position() and forceCloseSymmioPosition() func-
tions leads to fund lock
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/16

Summary
A user can call the closeSymmioPosition() and forceCloseSymmioPosition() functions
before the Keeper correctly updates positions by calling the confirmOpenPosition()
function, which is required to provide all information and confirmation of position
fulfillment in SYMMIO.

Vulnerability Detail
If these functions are called by the user before the position is moved to POSITION_OPENED
by the Keeper, it results in a situation where the user's funds become locked.

In such a case, the Keeper cannot open the position because the confirmOpenPosition()
function will revert on the quote OPENED check:

File: Account.sol
917: function confirmOpenPosition(
918: bool shouldRefund_,
..SNIP..
933:
934: _checkQuoteStatus(
935: _getQuoteStatus(position.quoteId),
936: QuoteStatus.OPENED
937:);

At the same time, the position cannot proceed further in its lifecycle by calling
confirmClosePosition(), as it will revert on the position status check:

File: Account.sol
1173: function confirmClosePosition(
1174: bool shouldRefund_,
..SNIP..
1178: _checkStatus(
1179: position.status,
1180: DeltaNeutralPositionStatus.POSITION_OPENED
1181:);

23

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/16

Impact
User funds may become locked in the subAccount.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1095-L1099

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L934-L937

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1178-L1181

Tool Used
Manual Review

Recommendation
Add a sanity check within the closeSymmioPosition() and forceCloseSymmioPosition()
functions:

function closeSymmioPosition(
bool shouldRefund_,
address subAccount_,
CloseRequestPositionParams calldata closeRequestParams_

) external gasRefund(shouldRefund_) onlyOwnerOrKeeper {
+ DeltaNeutralPosition memory position = positionsInfo[id_];
+ _checkStatus(
+ position.status,
+ DeltaNeutralPositionStatus.POSITION_OPENED
+);
+

_simpleMultiAccountCall(

Discussion
aegas-io

Will fix

0xklapouchy

24

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1095-L1099
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1095-L1099
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1095-L1099
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L934-L937
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L934-L937
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L934-L937
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1178-L1181
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1178-L1181
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1178-L1181

Partially Fixed.

It is recommended to add sanity check in both the closeSymmioPosition() and
forceCloseSymmioPosition() functions.

However, recommended sanity check was only added to closeSymmioPosition() here,
but not to forceCloseSymmioPosition().

0xklapouchy

Fix Confirmed.

Missing sanity check was added to the forceCloseSymmioPosition() function here.

25

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1108-L1111
https://github.com/Intent-X/sf-core-contracts/blob/999072590be6fc6bef9fff42a9f1fe2e6cb50423/contracts/funding/Account.sol#L1223-L1226

Issue M-3: The CANCEL_CLOSE_PENDING quote status
is not supported
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/20

Summary
When requestToCancelCloseRequest is called, the quote status may update to
CANCEL_CLOSE_PENDING. This status is not supported within the Account contract flow.

Vulnerability Detail
If requestToCancelCloseRequest is called for a quote whose original deadline has not yet
expired, its status will update to CANCEL_CLOSE_PENDING (Reference 1). In the current
Account contract, only acceptance from PartyB can set the status back to OPENED
(Reference 2). However, relying solely on PartyB is insufficient—if the quote remains in the
CANCEL_CLOSE_PENDING status, user funds will remain locked.

Within the Account contract, the PartyA forceCancelCloseRequest() function is not
utilized to prevent this limbo state.

Impact
User funds can become locked in an unsupported quote state.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1128-L1132

Tool Used
Manual Review

Recommendation
Add support for the PartyA forceCancelCloseRequest() function for quote in
CANCEL_CLOSE_PENDING status.

26

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/20
https://github.com/SYMM-IO/protocol-core/blob/main/contracts/facets/PartyA/PartyAFacetImpl.sol#L177-L181
https://github.com/SYMM-IO/protocol-core/blob/main/contracts/facets/PartyBPositionActions/PartyBPositionActionsFacet.sol#L83-L87
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1128-L1132
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1128-L1132
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1128-L1132

Discussion
aegas-io

Will fix

xiaoming9090

Fix Confirmed. Fixed here as per recommendation.

27

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1161

Issue M-4: No option to cancel a quote for the re-
maining unfilled amount of a position
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/22

Summary
When SYMMIO partially fills the original quote for a position, there is no option to
request the cancellation of the quote for the remaining unfilled amount.

Vulnerability Detail
Note

One crucial point is that when the original quote is partially filled, a new quote with a
different quote ID will be created/spawned (Reference).

Since requestToCancelQuote() only supports the original quote ID for cancellation, there
is no option to cancel any PENDING new quote that spawns when the original position
quote is partially filled.

File: Account.sol
607: function requestToCancelQuote(
608: bool shouldRefund_
..SNIP..
617: QuoteStatus quoteStatus = _getQuoteStatus(position.quoteId);

This leads to a situation where the unfilled part of the position can remain in the PENDING
status until it is either filled or expires.

Impact
Users are unable to cancel PENDING quotes, causing their positions to remain in a limbo
state.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L607

28

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/22
https://github.com/SYMM-IO/protocol-core/blob/dedde07a7f3018cb2d2563ec6386f71e89f2c0dd/contracts/libraries/LibPartyB.sol#L124
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L607
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L607
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L607

Tool Used
Manual Review

Recommendation
The requestToCancelQuote() function should support multiple quote IDs per position.

Discussion
aegas-io

Will fix

0xklapouchy

Fix Confirmed.

The reimplementation of the requestToCancelQuote() function allows determining the
quote for cancellation by leveraging the quoteId_ function parameter, as such
supporting multiple quote IDs per position.

29

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L610

Issue L-1: Incorrect scaling of amount_ during with-
drawal
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/8

Summary
The amount_ is not scaled appropriately during withdrawal, leading to incorrect
validation and users withdrawing fewer assets than expected.

Vulnerability Detail
The comment of this function (Line 840 below) mentioned that the amount_ must be in
the collateral token's native decimals. In this case, the collateral is USDC, which will be in
6 decimals precision.

However, the availableBalance variable in Line 871 is assigned to the value returned from
_symmio().balanceOf(position.subAccount) function, which is denominated in SYMMIO's
18 decimals precision.

Thus, the logic and conditional check in Line 873 below will be incorrect since one
variable (availableBalance) is denominated in SYMMIO's 18 decimals while the other
(amount_) is denominated in native precision.

Note: All balance and allocatedBalance within a SYMMIO's subaccount are scaled to 18
decimals.

In addition, the amount_ parameter in the Symmio.internalTransfer function in Line 882
has to be denominated in SYMMIO's 18 decimals precision. Thus, if the amount_ is
denominated in the collateral token's native decimals, users will withdraw fewer assets
than expected.

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f6
9dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol
#L830

File: Account.sol
840: * @param amount_ The amount of collateral to withdraw, specified in the

collateral token's native decimals.↪→

..SNIP..
File: Account.sol
857: function withdrawFromSubAccount(
858: uint256 id_,
859: address recipient_,
860: uint256 amount_
861:) external onlyOwner {
..SNIP..

30

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/8
https://github.com/SYMM-IO/protocol-core/blob/fdd258de01906c5350a12e70073b929cc28eceb5/contracts/facets/Account/AccountFacet.sol#L75
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L830
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L830
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L830

871: uint256 availableBalance = _symmio().balanceOf(position.subAccount);
872:
873: if (availableBalance < amount_ || availableBalance == 0) {
874: revert InsufficientSymmioBalance();
875: }
876:
877: _simpleMultiAccountCall(
878: position.subAccount,
879: abi.encodeWithSelector(
880: ISymmio.internalTransfer.selector,
881: recipient_,
882: amount_
883:)
884:);

Impact
Incorrect validation and users withdrawing fewer assets than expected.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f6
9dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol
#L830

Tool Used
Manual Review

Recommendation
Consider scaling the amount_ accordingly, depending on the operation performed:

• If the amount is to be passed into the Symmio.internalTransfer function, it has to
be scaled up SYMMIO's 18 decimals precision.

• When a comparison is performed, both variables must be scaled to a similar scale.

Discussion
aegas-io

Will fix

The expected behavior is a transfer in 18 decimals always in this case, errors in natspec,
no correct description. In the case of transferring exactly the collateral decimals, we

31

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L830
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L830
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L830

face the problem of dust on the symmio balance, which can be up to 9.[9]e12 in the case
of collateral with decimals 6

xiaoming9090

Fix Confirmed. The NatSpec has been updated here to document that the _amount must
be denominated in 18 decimals.

32

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L847

Issue L-2: Computation of toTransferAmount can be
skipped if fundingShortAmount_ == toShortSymmio
Position
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/11

Summary
The computation of toTransferAmount can be skipped if fundingShortAmount_ is equal to
toShortSymmioPosition.

Vulnerability Detail
toTransferAmount only needs to be computed if fundingShortAmount_ is insufficient to
cover the entire amount of toShortSymmioPosition. If fundingShortAmount_ and
toShortSymmioPosition are equal, the computation of toTransferAmount can be skipped.

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1307

- if (fundingShortAmount_ <= toShortSymmioPosition) {
+ if (fundingShortAmount_ < toShortSymmioPosition) {

toTransferAmount += toShortSymmioPosition - fundingShortAmount_;
}

Impact
Unnecessary operation/Gas efficiency

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f6
9dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol
#L1266

Tool Used
Manual Review

33

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/11
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1307
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1307
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1307
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L1266
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L1266
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/e8d7835f69dfcbc0d617d737fdf92a8c42a93c66/sf-core-contracts/contracts/funding/Account.sol#L1266

Recommendation
Consider making the changes as shown above.

Discussion
aegas-io

Will fix

xiaoming9090

Fixed Confirmed. Fixed as per recommendation (Reference)

34

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1327

Issue L-3: Dust amount left in totalScheduled
PositionsCollateralReserv
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/13

Summary
The dust amount in the totalScheduledPositionsCollateralReserv is not cleared after all
the scheduled positions are fulfilled, leading to
totalScheduledPositionsCollateralReserv to be inflated.

Vulnerability Detail
When all the schedule positions are fulfilled, the unused dust
(nativeSpotLongAssetReserved - nativeSpotLongAssetInvolved) will be removed from the
totalSpotLongAssetInvolved. This is to prevent totalSpotLongAssetInvolved from slowly
becoming inflated due to accumulating dust, which will affect the
_checkOnAvailableSpotLongAssetBalance function's calculation.

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L587

File: Account.sol
488: function tryOpenPositionFromKeeper(
489: bool shouldRefund_,
..SNIP..
577:
578: if (info.count == info.openedCount + 1) {
579: uint256 restSpotLongAssetReserved = info
580: .nativeSpotLongAssetReserved -
581: scheduledPositionRequests[scheduledPositionRequestId_]
582: .nativeSpotLongAssetInvolved;
583:
584: if (restSpotLongAssetReserved > 0) {
585: totalSpotLongAssetInvolved[
586: info.spotLongAsset
587:] -= restSpotLongAssetReserved;
588: }
589: }

However, it is also possible that there will be unused reserved collateral in the
totalScheduledPositionsCollateralReserv.

Assume that the amount is 9 and count is 4. In this case, totalAmount will be 36. If

35

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/13
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L587
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L587
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L587

nativeSpotLongAssetReserved_ > 0, then totalAmount will become 9 (divided by 4).

totalScheduledPositionsCollateralReserv will be 9. When a scheduled position is
fulfilled, only 2 (info.amount / 4 = 9 / 4 = 2) deducted from
totalScheduledPositionsCollateralReserv each time.

When all the four (4) scheduled positions are fulfilled, only 8 (2 * 4) will be deducted from
totalScheduledPositionsCollateralReserv, leaving behind 1 wei of dust.

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L547

File: Account.sol
546: if (nativeSpotLongAssetInvolved_ > 0) {
547: totalScheduledPositionsCollateralReserv -= info.amount / 4;
..SNIP..
553: } else {
554: totalScheduledPositionsCollateralReserv -= info.amount;
555: }

Thus, the remaining dust from the reserved collateral also needs to be removed from
totalScheduledPositionsCollateralReserv.

Impact
Dust amount will slowly accumulate in the totalScheduledPositionsCollateralReserv,
leading to totalScheduledPositionsCollateralReserv to be inflated.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L547

Tool Used
Manual Review

Recommendation
Consider clearing the dust amount in thetotalScheduledPositionsCollateralReserv
after all the scheduled positions have been fulfilled.

36

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L547
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L547
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L547
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L547
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L547
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L547

Discussion
aegas-io

Will fix

xiaoming9090

Fixed Confirmed. Fixed in here.

totalScheduledPositionsCollateralReserv will be reset to zero once all scheduled
positions have been fulfilled (openSchedulePositionCount == 0) to clear any remaining
dust.

37

https://github.com/Intent-X/sf-core-contracts/blob/e277ee76a35e0dad9c2b37d308f8b68ea71be715/contracts/funding/Account.sol#L457

Issue L-4: Position is closed even if liquidation is still
on-going
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/17

Summary
The position is closed even though the liquidation process has not yet been completed.
As a result, the subaccount is wrongly marked as available, leading to a revert if users
use the subaccount to open a new position.

Vulnerability Detail
The liquidation in SYMMIO involves five (5) stages:

1. liquidatePartyA

2. setSymbolsPrice

3. liquidatePendingPositionsPartyA

4. liquidatePositionsPartyA (Quote will be marked with QuoteStatus.LIQUIDATED in this
stage)

5. settlePartyALiquidation

When the quote's status is set to QuoteStatus.LIQUIDATED, it does not mean that the
liquidation has been completed.

After the liquidation, the subaccount's allocated balance will usually be zero. However,
in some instances, it is possible that after the liquidation, the subaccount's allocated
balance will be a non-zero as it receives reimbursement (Reference).

The reimbursement can happen if:

1. There are pending quotes that prepaid the trading fee. During liquidation, the
pending quote will be cancelled and trading fee will be refunded back. If any PartyB
performs a partial fill, there will be a pending quote, and this scenario will happen.

2. SYMMIO has a feature called Deferred Liquidation. In short, assume that Bob's
account is subjected to liquidation at T0. If at T1, Bob deposits 100 USDC collateral
to its account and its account becomes healthy, the liquidator can ”go back in
time” and liquidate Bob based on his account's state at T0 (This is assuming he does
not perform any action that increases his account's nonce). In this case, the 100
USDC additional collateral he deposited will be reimbursed back to his account
after his account is liquidated (Reference)

The reimbursement will only occur at the last stage of the liquidation process
(settlePartyALiquidation).

38

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/17
https://github.com/SYMM-IO/protocol-core/blob/c426964dfb78cca68c10c15838398b5bd313582d/contracts/facets/liquidation/LiquidationFacetImpl.sol#L297
https://docs.symm.io/protocol-architecture/technical-documentation/contract-docs/contracts-documentation-0.8.3/muonstorage#deferred-liquidation
https://github.com/SYMM-IO/protocol-core/blob/30e29dea92aec9b8191c364ec7984cb242f70c9a/contracts/facets/liquidation/DeferredLiquidationFacetImpl.sol#L43

In the current LODE design, it is possible that when the liquidation is still at Stage 4
(liquidatePositionsPartyA), the process of closing a subaccount (confirmClosePosition
-> deallocateFromSubAccount -> withdrawFromSubAccount) can be completed. The
subaccount will be marked as ”clean/free” to be available for use for a new position, but
in reality the liquidation process against this subaccount has not been completed yet
and the subaccount's state in SYMMIO has not been reset.

Impact
LODE will consider a subaccount available for a new position while, in reality, the
subaccount has not yet completed its liquidation. If anyone uses this subaccount to
open a new position, it will revert as SYMMIO does not allow any operation to be
performed against a liquidated account.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1173

Tool Used
Manual Review

Recommendation
In the event of a liquidation, the LODE's position should only be marked as closed AND
the subaccount should only be released/freed when all the following conditions are met:

• The liquidation process is completed (After Stage 5 - settlePartyALiquidation).
Once the last stage is completed, the subaccount's liquidationStatus will revert to
false. (Reference)

• If the subaccount has multiple open positions, all its existing positions must be
liquidated (status = QuoteStatus.LIQUIDATED). A subaccount can have multiple
open positions if PartyB performs a partial fill.

This ensures that when a subaccount is marked as available, the state of the subaccount
is a clean slate (liquidationStatus = false AND zero open positions)

Discussion
aegas-io

Will fix

39

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1173
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1173
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1173
https://github.com/SYMM-IO/protocol-core/blob/c426964dfb78cca68c10c15838398b5bd313582d/contracts/facets/liquidation/LiquidationFacetImpl.sol#L311

xiaoming9090

Fix Confirmed. Fixed as per recommendation. Position can only be closed if:

• The subaccount is not under liquidation (Reference) or when the liquidation is
completed.

• All opened positions and pending quotes of the subaccount are closed (Reference)

40

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1230
https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/Account.sol#L1226

Issue L-5: The LIQUIDATED_PENDING quote status is
not supported
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/19

Summary
The LIQUIDATED_PENDING quote status is not expected within the Account contract flow.

Vulnerability Detail
Note

During a partial fill in SYMMIO, a new quote with a new ID will be created. This issue
highlights one of the problems associated with that process.

The LIQUIDATED_PENDING status was introduced in SYMMIO to handle the liquidation of
pending quotes when a subAccount becomes insolvent.

Consider a scenario where a quote is partially filled, and after some time, the user's
subAccount becomes insolvent due to a sharp price decline. If liquidation occurs, the
new pending quote for the remaining unfilled portion will also be liquidated, resulting in
the LIQUIDATED_PENDING status for the unfilled quote.

Additionally, if a quote cancellation is requested for the remaining new pending quote,
the status can transition to LIQUIDATED_PENDING from CANCEL_PENDING in some situations.

Impact
A subAccount position within Account contract may enter an unexpected state where
liquidation finalization becomes impossible. As a result, the long asset portion of the
position could become inaccessible to the user.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1185-L1191

Tool Used
Manual Review

41

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/19
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1185-L1191
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1185-L1191
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1185-L1191

Recommendation
Support for the LIQUIDATED_PENDING status should be considered within the quote
cancellation flow and the close position flow:

QuoteStatus quoteStatus = _getQuoteStatus(position.quoteId);
if (

quoteStatus != QuoteStatus.CLOSED &&
+ quoteStatus != QuoteStatus.LIQUIDATED_PENDING &&

quoteStatus != QuoteStatus.LIQUIDATED
) {

revert InvalidQuoteStatus();
}

Discussion
aegas-io

Won't fix

LIQUIDATED_PENDING refers to quotes that are in PENDING and have not been opened,
in this case there must have be 2+ quotes:

1. An open position that will go to LIQUIDATED status

2. A quote that will go to the LIQUIDATED_PENDING status

confirmClosePosition implies the need to close only the main position, and cannot be
used for pending/second... quote, in this case, the fate of secondary quotas is not
interested if the main one is liquidated

The main position in this case cannot acquire the LIQUIDATED_PENDING status.
Therefore, checking for this status is unnecessary

0xklapouchy

Fixed by introduction of fixes for the #17 issue.

42

IssueL-6: TheAccountsCenter.collateralvaluecan
mismatch with ISymmio.getCollateral()
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/21

Summary
The collateral value is not sanity-checked against ISymmio.getCollateral() during
initialization or updates.

Vulnerability Detail
In the AccountsCenter contract, the collateral value can be set to any address. This can
lead to two issues:

1. The collateral does not match the expected value, new positions cannot be opened
in the Account contract.

2. The collateral value was updated after positions have been opened, those
positions may become unclosable, leaving users unable to exit their trades.

Impact
Amismatch between AccountsCenter.collateral and the collateral used by SYMMIO
can disrupt position management.

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/b59282f25
fb82b3b6763b1941c03ac066377705d/AccountsCenter.sol#L176
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/b59282f25
fb82b3b6763b1941c03ac066377705d/AccountsCenter.sol#L197-L208

Tool Used
Manual Review

Recommendation
Implement a sanity check to ensure the collateral value matches
ISymmio.getCollateral() during both initialization and updates.

43

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/21
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/b59282f25fb82b3b6763b1941c03ac066377705d/AccountsCenter.sol#L176
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/b59282f25fb82b3b6763b1941c03ac066377705d/AccountsCenter.sol#L176
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/b59282f25fb82b3b6763b1941c03ac066377705d/AccountsCenter.sol#L197-L208
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/b59282f25fb82b3b6763b1941c03ac066377705d/AccountsCenter.sol#L197-L208

Discussion
aegas-io

Will fix

xiaoming9090

Partially Fixed.

It is recommended that the check be added in both the AccountsCenter.initialize()
and AccountsCenter.setCollateral() functions. However, it was only added to
AccountsCenter.setCollateral(), but not AccountsCenter.initialize().

• AccountsCenter.initialize() - Check not added.

• AccountsCenter.setCollateral() - Check added in here

0xklapouchy

Fix Confirmed.

Recommended check was added to the AccountsCenter.initialize() here.

44

https://github.com/Intent-X/sf-core-contracts/blob/543de91cf5f7e30b88ebf883f39d810343d5a59a/contracts/funding/AccountsCenter.sol#L214
https://github.com/Intent-X/sf-core-contracts/blob/999072590be6fc6bef9fff42a9f1fe2e6cb50423/contracts/funding/AccountsCenter.sol#L191-L193

Issue L-7: Opening a new position might revert due
to insufficient allocated balance
Source:
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/23

Summary
Opening a new position might revert due to insufficient allocated balance as the current
check does not consider the trading fee that SYMMIO charges.

Vulnerability Detail
When a new quote is sent to SYMMIO, SYMMIO will charge a trade fee against the
notional value of the position (Reference). If the notional value of the short position is 75
ETH, and the trade fee is 1%, 0.75 ETH will be deducted from the account's
allocatedBalances.

However, in the _checkOnAvailableCollateralBalance() check in Line 1311 below, it does
not consider the trade fee. If the amount_ is 100 ETH, toShortSymmioPosition will be 25
ETH. With 3X leverage, the position's notional value will be 75 ETH. In this case, the
_checkOnAvailableCollateralBalance() only checks if this contract's balance has 25 free
ETH to open the position, but does not include the 0.75 ETH trading fee.

If we consider the trade fee, the toTransferAmount should be 25.75 ETH.

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1311

File: Account.sol
1273: function _tryOpenPosition(
..SNIP..
1310:
1311: _checkOnAvailableCollateralBalance(
1312: (nativeSpotLongAssetInvolved_ > 0 ? 0 : toLongSpotPosition) +
1313: toTransferAmount
1314:);

Impact
Opening a new position might revert due to insufficient allocated balance.

45

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/issues/23
https://github.com/SYMM-IO/protocol-core/blob/641b7a61dbda71b7a0d31a5a735924902abd5af5/contracts/facets/PartyA/PartyAFacetImpl.sol#L110
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1311
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1311
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1311

Code Snippet
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad
5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol
#L1311

Tool Used
Manual Review

Recommendation
Consider taking into consideration SYMMIO's trading fee when opening a position.

Discussion
aegas-io

Won't fix

The trading fee is included within the allocated balance and is configured by reducing
the position (parameters), send quote. Just as the swap fee is deducted from the
collateral allocated for the spot long part, the trading fee will be deducted from the
short allocated part within the allocated balance.

For example, 25 USD is allocated for the short part, the keeper/fe will calculate the
quote size so that (25 USD) >= position size (partyAmm + cva + lf) + trading fee

The short part is the allocated available balance, the keeper tries to maximize the
position size within this balance but also takes into account the trading fee, as without it
it would lead to revert tx (symmio have enough checks for this cases)

xiaoming9090

Acknowledged.

46

https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1311
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1311
https://github.com/sherlock-audit/2025-01-lode-funding-rate-product/blob/2c57a2ad5d46091910d9341d341b59d1afe3bce0/sf-core-contracts/contracts/funding/Account.sol#L1311

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

47

	Introduction
	Scope
	Final Commit Hash
	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged

	Issue H-1: Undervalued fee accounting
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue H-2: totalSpotLongAssetInvolved will be inflated when position is closed if it is partially filled
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue H-3: totalSpotLongAssetCollateralReserv will be inflated when position is closed if it is partially filled
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue H-4: The confirmOpenPosition() function should support the QUOTE_CANCEL_PENDING position status
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue H-5: Incorrect PnL calculation during partial fill
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-1: The forceCancelQuote() function should support the EXPIRED quote status
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-2: User premature calling of closeSymmioPosition() and forceCloseSymmioPosition() functions leads to fund lock
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-3: The CANCEL_CLOSE_PENDING quote status is not supported
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue M-4: No option to cancel a quote for the remaining unfilled amount of a position
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-1: Incorrect scaling of amount_ during withdrawal
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-2: Computation of toTransferAmount can be skipped if fundingShortAmount_ == toShortSymmioPosition
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-3: Dust amount left in totalScheduledPositionsCollateralReserv
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-4: Position is closed even if liquidation is still on-going
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-5: The LIQUIDATED_PENDING quote status is not supported
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-6: The AccountsCenter.collateral value can mismatch with ISymmio.getCollateral()
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Issue L-7: Opening a new position might revert due to insufficient allocated balance
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool Used
	Recommendation
	Discussion

	Disclaimers

